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This paper investigates the analytical-numerical method for solving nonlinear dynamical systems. 
The governing partial differential equation of order four was transformed to Ordinary differential 
equation using analytical method. The finite difference method was used to transform the 
approximate governing equation. It was shown from the graph of deflection against distance that the 
deflection increases as the value of distance increases and also from the graph of deflection against 
time, the deflection increases with increase in time. The result is in agreement with the existing results.
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ABSTRACT 

INTRODUCTION 
The moving load is an unavoidable difficulty in 
structural dynamics. The dynamic behaviour of 
beams on elastic foundations subjected to moving 
loads or masses has been investigated by many 
researchers in engineering, especially in Railway 
Engineering. The modern trend towards higher 
speeds in the railways has further intensified the 
research in order to accurately predict the vibration 
behaviour of the railway track. These studies 
mostly considered the Winkler elastic foundation 
model that consists of infinite closely-spaced linear 
springs subjected to a moving load. 
 The dynamic response of structures 
carrying moving masses is a problem of wide 
spread practical significance. A lot of hard work has 
been done during the last 100 years relating with the 
dynamic response of railways bridges and highway 
bridges under the effect of moving loads. Beam 
type structures are widely used in many branches of 
civil, mechanical and aerospace engineering. The 
dynamic effect of moving loads was not known 
until mid-nineteenth century. When the 
Stephenson's bridge across river Dee Chester in 
England in 1947 collapsed, it motivates the 
Engineers for research of moving load problem. 
The simplest case of a moving load investigation is 
the case of a simple beam over which a 
concentrated load is moving, that is represented 

with a Fourth order partial differential equation. 
This problem has significant effect in civil and 
mechanical engineering. The dynamic analysis of 
the vibrating beam is done by neglecting the 
disconnection of the moving mass from the beam 
during the motion and result is given by 
considering mass moving at constant speed and in 
one direction. Once the load departs from the beam, 
it begins to vibrate at in free vibration mode. Hence, 
this process no longer comes within the scope of the 
experiment.
 The problem of moving loads on structures 
was first considered in the early Nineteenth century 
when the traversing of bridges by locomotives was 
analysed, this has been followed by a considerable 
amount of research on this topic. The purpose of 
dynamic analysis is to know the structural 
behaviour under the influence of various loads and 
to get the necessary information for design such as 
deformation, moments and dynamic forces etc. 
Structural analysis is classified in to static and 
dynamic analysis. Static analysis deals with load 
which is time independent. But in dynamic analysis 
magnitude, direction and position of mass change 
with respect to time. Important dynamic loads for 
vibration analysis of bridge structure are vehicle 
motion and wave actions i.e. earthquake, stream 
flow and winds. 
Lee (1998) studied extensively the dynamic 

responses of a beam acted upon by moving forces 
or moving masses, in connection with the design of 
railway tracks and bridges and machining 
processes. The equation of motion in matrix form 
has been formulated for the dynamic response of a 
beam acted upon by a moving mass by using the 
Lagrangian approach. Convergence of numerical 
results is found to be achieved with just a few terms 
for the assumed deflection function.Kargarnovin 
and Younesian (2005) also analysed the dynamic 
response of infinite Timoshenko and Euler-
Bernoulli beams on nonlinear viscoelastic 
foundations to harmonic moving loads.
Mehri, B. A Davar, &Rahmani O.(2009) presented 
the linear dynamic response of uniform beams with 
different boundary conditions excited by a moving 
load, based on the Euler- Bernoulli beam theory. 
Using a dynamic green function, effects of different 
boundary conditions, velocity of load and other 
parameters are assessed and some of the numerical 

results are compared with those given in the 
references.

Mathematical Formulation
In this section, the dynamic response of a Bernoulli 
Beam on Winkler foundation under the action of 
moving partially distributed load is analysed under 
a non-prismatic Euler-Bernoulli beam of length L 
resting on a Winkler foundation and traversed by 
uniform partially distributed moving mass.
The resulting vibrational behaviour of this system 
is described by the following partial differential 
equations.

mEIW (x,t) + – W (x,t)+KW(x,t) = f(x,t)(1.0)xxx L ttt

Where f(x,t) is the applied moving mass defined as

NOMENCLATURE

Parameter  Description 

L Beam length 

EI Flexural rigidity of the beam 

Æ Modulus of Elasticity  

Ĝ HŎLÔI The lateral deflection of the beam measured upwards from its equilibrium when 

unloaded axial coordinate. 

Ğ Axial coordinate 

Ç The coefficient of Winkler foundation (force per length squared) 

Đ  The constant mass per unit length of the beam 

Đ  The mass of the load 

Ĕ The time 

Ĵ   The acceleration due to gravity 

Ä Fixed length of the beam 
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Next substituting equation (2.2) into equation (2.0), 
the approximate governing equation is found to be

To simplify equation (2.3), we noted that for free 
vibration of an Euler-Bernoulli beam, we have

th2and P is the square of the j  natural frequency of the j 

beam.

For arbitrary X  (x), we have j

(2.6)

Equation (2.6) is the desired set of coupled second 
order differential equations. By solving these 
equations in (2.6) for T (t)’s and substituting the j

resulting expression into equation (1.7), the desired 
solution for the vibration of the beam under 
different boundary conditions and with any number 
of modal shapes can be determined.

1.3 SIMPLY-SUPPORTED BEAM
To solve the above coupled equation (2.6), we need 
to know the exact form of the normalized deflection 
X . As a matter of fact, there is exists various turns j

of X   depending on the vibrating configurations of j

the beam. In other words, the solution of equation 
(2.6) depends on the associated boundary 
conditions as the exact form of X  depends on the j

type of boundary conditions under consideration.

Hence, as an illustrative example, we consider a 
beam which is simply supported that is a beam 
whose boundary conditions are given as

It is well known that for a simply supported beam

Direct substituting of (2.8) into (2.6) will yield the 
desired governing equation which is, however an 
approximate one. It is remarked, that for the 
configuration under discussion an exact differential 
governing equation can be derived by going 
through arguments similar to those used in 
obtaining equation (2.6).

After integrating equation (2.9) for arbitrary X (X)j 

we obtain

Furthermore, the total derivative    Wtt (x,t) which 
appears in equation (1.0) is defined as

Wtt (x,t) = Wtt (x,t) + 2VWxt (x,t) + 
V2Wxx (x,t)(1,2)

Where V is the constant velocity of the moving 
mass which is defined as 

H (x) is the Heaviside unit function usually 
defined as

1.1 BOUNDARY CONDITIONS

The pertinent boundary conditions for the problem 
under consideration can be any of the following 
classical boundary conditions.

Finally, the initial conditions are:

1.2 SOLUTION OF THE PROBLEM
In this section, we proceed to solve the above initial 
boundary – value problem described by equation 
(1.0), (1,1) and (1.6)

To this effect, we assume that the unknown initial 
deflection, 

Where T (t) are unknown functions of time t and J

At this juncture, it is remarked that the applied force 
can also be expressed as a series solution to 
equation (3.7)then we have

Where T are unknown functions of time different jj 

from those T Equations (1.8) and (1.9) yieldj 

It is noted that equation (2.0) has two sets of 
unknowns viz: the T 's and the T 's. this naturally j fj

makes equation (2.0) highly coupled. To reduce his 
high degree of coupleness, we would have to 
determine one of the these sets of unknowns. We 
remark, however, that we find it convenient to 
determine the T 's To this end, we first notice that fj

equations (1.1) and (1.9) yield

Next, multiply equation (2.1) by the unknown 
normalized deflection function X (x)i

and then integrate the resulting equation over the 
length of the beam to obtain 
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It is found that as the value of deflection increases 
and the value of distance increases there is a 
decrease in velocity deflection at K=2.

It is found that at a constant value of time (t) the 
deflection increases and also decreases at k=2.

It is found that as the value of deflection increases 
and the value of distance increases there is a 
decrease in velocity deflection at K=4.

We now use the finite difference method in order to 
solve the above equation numerically, we made use 
of approximate central difference method, we 
obtain.

NUMERICAL RESULTS
The result obtained in equation (3.1) for nonlinear 
dynamical systems subjected to partially 
distributed load is discussed in this chapter using 
analytical-numerical method. Which made use of 
approximate finite difference method and 
MATLAB was used for the values of the variable 
used and the following graphs were plotted as 
shown in figures 1.1- 1.8.

 (3.1)

Deflection against distance at various values of K, 
which shows that at a constant value of velocity 
deflection increases as the value of K increases. 
This was in agreement with the existing result.

is found that deflection decreases against distance 
at a constant value of x at K=2.

Deflection against time, it was found that the 
deflection decreases first and later increases at 
different time (t) when K=4

Deflection against time, it was found that the 
deflection decreases first and later increases at 
different time (t) which was the same result we are 
given in Fig 1.6.
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Fig 1.1: Graph of Deflection against distance at K = 2

Fig 1.2:  Graph of Deflection against time at K = 2

Fig 1.3 Graph of deflection against distance at K = 4

Fig 1.4: Graph of Deflection against distance at 
various values of K.

Fig 1.5: Graph of deflection against distance at K = 6.

Fig 1.6: Graph of deflection on against time at K = 4.

Fig 1.7: Graph of deflection against time at K = 6.
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NUMERICAL DISCUSSION
The dynamic response of nonlinear dynamical 
systems were considered. Also the systems were 
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constant value of velocity deflection increases as 
the value of K increases. The results obtained were 
compared with the existing result.
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Green computing is a technology that tends towards the sustainability of the environment, through 
energy efficiency, electronic waste reduction, virtualization, employing thin client, remote 
administration, green power administration and telecommuting. Commuting entails movement from 
one point to another, with the aim of satisfying individual needs. The population of people all around 
the world keeps growing exponentially and the major means of transportation is by road using 
specifically motor vehicles and sometime locomotive trains which exhaust is Carbon Monoxide 
(CO). CO has been categorized as a harmful substance to the surrounding, and thus creates more 
challenges to global warming. In lieu of this, telecommuting has been identified as a major weapon to 
control the challenge. This technology is a product of information communication technology, 
specifically the e-commerce. With this technology, the rate at which commuters travel is drastically 
reduced, thus the rate of deposition of CO to the environment is correspondingly reduced, and thus 
paving way for a greener environment. This concept termed telecommuting is embraced in this 
research by introducing e-commerce to a livestock production farm, and software engineering models 
were emplored to design a reliable on-line shopping for a farm. In the findings, the adoption of this 
technology by clients and farm workers in the livestock farm has reduced foot print on this axis 
through the technology of telecommuting. This in turn reduced the rate of deposition of CO to the 
atmosphere.

Key words:  Green Computing, Telecommuting, Carbon Foot Print, Population.
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ABSTRACT 

INTRODUCTION
As the world is constantly evolving, and there is an 
improvement in information technology industry, 
the electronic energy and machine usage will be 
something to reckon with in the coming years. In 
recent years, companies in the computer industry 
have come to realize that going green is in their best 
interest, both in terms of public relations and 
reduced costs . The deposition of carbon monoxide 
(CO) to the atmosphere from locomotive engine 
and other electronic items usage will the world tend 
towards an uncomfortable zone, and something to 
worry about. The deed or thought of how to reduce 
global warming and hot climate change caused by 
this machines increase has become impatient. 
Various machines at different specifications are 
built daily to tackle and reduce human stress and 
increase productivity in services rendered. This 
process requires a larger amount of energy 

(power)a and money for its effective functioning. It 
is amazing to know that these are forms of 
achievement from the ancient days when things are 
done manually, in the modern days, works are done 
quickly, everything is working effectively and there 
is less time to worry about low productivity 
because the improvement in this machine has aided 
productivity which is a good achievement. There is 
a neglect to acknowledge this type of achievement, 
and the effect it has on the general environment, 
what it has on the air (for respiration), the food (for 
consumption) which affects our life in one way or 
the other . The various chemical substances emitted 
by these machines i.e. cars, tractors used in farm or 
other machineries have negative reactions on lives 
and environment. Therefore there is a need to find 
for a new measure to curtail this, hence the 
approach of green computing technology.
Green computing also called green technology is 
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