GENETIC DIVERSITY OF HONEYBEE (APIS MELLIFERA ADANSONII) IN IJEBU ENVIRONAS REVEALED BY SIMPLE SEQUENCE REPEAT (SSR) MARKERS

Authors

  • Mistura Temitope Adeleke Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria
  • Oladunni Nimota Adekunle Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria
  • Folarin Ojo Owagboriaye Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria
  • Adebola Olayemi Odeseye Department of Biological Sciences, Nigerian Institute of Science Laboratory Technology, Samonda, Ibadan, Oyo State, Nigeria
  • Kemi Sarah Oyedele Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria
  • Afolashade Abosede Adebowale Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria
  • Feranmi Tolulope Orindare Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria
  • Damilola Johnson Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria
  • Olusegun Adebayo Lawal Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria

DOI:

https://doi.org/10.46881/ajsn.v10i0.180

Keywords:

Apis mellifera adansonii, Genetic Diversity, Honeybee, Ijebu, SSR Markers

Abstract

Honeybee Apis mellifera adansonii, dominant honey producing species in Nigeria was subjected to genetic variability studies using Simple Sequence Repeat (SSR) in other to provide the baseline data in Nigeria. Nine (9) Simple Sequence Repeats (SSR) primers were used to assess the genetic diversity in Two (2) worker bees each collected from 22 colonies found in the four apiaries in Ijebu environs of Ogun State. Data collected were subjected to analysis and results showed that six (6) out of nine primers produced 80 reproducible, polymorphic bands while the remaining three (3) were monomorphic. Gene diversity (H ) in total population and magnitude of differentiation among T populations (FST) was 0.430 and 0.340, respectively. Analysis of Molecular Variance (AMOVA) partitioned the total genetic variation as 70% within, 30% among populations. The cluster analysis showed that Ipari-Oke 3 and Odo-Epo 1-8 populations diverged from others which showed they are closer in genetic distances while Ipari-Oke 1 and Odo-Epo 2-5 were newly observed subcluster which represents another subspecies. In conclusion, genetic variations existed amongst the honey worker bees populations in Ogun State.

Author Biographies

Mistura Temitope Adeleke, Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria

Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria

Oladunni Nimota Adekunle, Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria

Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria

Folarin Ojo Owagboriaye, Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria

Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria

Adebola Olayemi Odeseye, Department of Biological Sciences, Nigerian Institute of Science Laboratory Technology, Samonda, Ibadan, Oyo State, Nigeria

Department of Biological Sciences, Nigerian Institute of Science Laboratory Technology, Samonda, Ibadan, Oyo State, Nigeria

Kemi Sarah Oyedele, Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria

Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria

Afolashade Abosede Adebowale, Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria

Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria

Feranmi Tolulope Orindare, Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria

Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria

Damilola Johnson, Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria

Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria

Olusegun Adebayo Lawal, Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria

Department of Zoology and Environmental Biology, Olabisi Onabanjo, P.M.B 2002 Ago-Iwoye, Ogun State, Nigeria

References

Abdullahi, G., Sule, H., Chimaya, I. A. &Isah, M. D. (2011). Diversity and relative distribution of Honeybees foraging plants in some selected reserves in Mubi region, Sudan Savannah zone of Nigeria. Advances in Applied Science Research. 2 (5):388395.

Abou-Shaara, H. F., Draz, K. A., Al-Aw, M., & Eid, K. (2012). Stability of honeybee morphological characters within open populations. Uludag Bee Journal, 12 (1):31-37.

Ajao, A. M. (2012). Comparative Studies on Ecology and Morphometrics of Reared and Feral Honeybees in Geological Zones of Kwara State, Nigeria. PhD Thesis. Federal University of Agriculture, Abeokuta.

Akunne, C. E., Akpan, A. U. & Ononye, B. U. (2016). A pattern of nectariferous plant diversity of African honeybee (Apis mellifera adansonii L.) in Awka and Agulu Environs, Southeast Nigeria. Journal of Apiculture, 31 (4):281-291.

Alaux, C., Le Conte, Y. & Decourtye, A. (2019). Pitting wild bees against managed honey bees in their native range, a losing strategy for the conservation of honey bee biodiversity. Frontiers in Ecology and Evolution,7:60.

Arias, M. C., Brito, R. M., de Oliveira Francisco, F., Moretto, G., de Oliveira, F. F., Silvestre, D. & Sheppard, W. S. (2006). Molecular markers as a tool for population and evolutionary studies of stingless bees. Apidologie, 37 (2): 259-274.

Batra, S.W.T. (1995). Bees and pollination in our changing environment. Apidologie, 26 (5):361-370.

Fasasi, K.A. (2018). Microbiota of Honeybees Apis mellifera adansonii (Hymenoptera: Apidae) from selected Ecozones, South West Nigeria. Pakistan Journal of Biological Sciences. 21: 232-238. Fasasi, K. A.& Afolabi, M. A. (2019). Comparative study of forage plants by Apis mellifera adansonii (Hymenoptera: Apidae) in Osun State, Nigeria. Journal of Applied Sciences. 19:121-127.

Hunt, G. J.&Page, R. E. (1992). Patterns of inheritance with RAPD molecular markers reveal novel types of polymorphism in the honeybee. Theoretical and Applied Genetics, 85 (1):15-20.

Ivanova, E., Ivgin, R., Kence, M. & Kence, A. (2007). Determination of genetic variation and differentiation in honeybees of Turkey sta nd Bulgaria. 1 Balkan Countries Beekeeping Congress and Exhibition Abstracts p47. 29 March-1 April 2007, Ýstanbul, Türkiye Ivanova, E., Staykova, T. & Petrov, P. (2010) Allozyme variability in populations of local Bulgarian honeybee. Biotechnology and Biotechnological Equipment, 24 (2): 371–374.

Kence, M., Farhoud, H.J. &Tunca, R.I. (2009) Morphometric and genetic variability of honeybee (Apis mellifera L.) populations from northern Iran, Journal of Apicultural Research, 48 (4): 247-255.

Kumar, N. S. & Gurusubramanian, G. (2011). Random amplified polymorphic DNA (RAPD) markers and its applications. Science Vision, 11 (3): 116-124.

Lewontin, R. C. (1972). The apportionment of human diversity. Evolutionary Biology, 6: 381-398.

Michener, C. D. (2013). The meliponini Pot-honey, Springer. 3-17.

Miller, M.P. (1997). Tools for population genetic analyses (TFPGA) 1.3: A Windows program for the analysis of allozyme and molecular population genetic data. Computer software distributed by the author. Department of Biological Sciences, Nothern Arizona University, Flagstaff, AZ.

Murray, M. G. & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8:43214325.

Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences. USA, 70: 3321-3323.

Oldroyd, B. P. & Fewell, J.H. (2007). Genetic diversity promotes homeostasis in insect colonies. Trends Ecology Evolution, 22 (8): 408-413.

Oluwaseun, T. O. (2009). Economics of honey production in International Journal of Entomology Research 35 Ijebu Division of Ogun State. Unpublished M.Sc. Thesis, Olabisi Onabanjo University, Ogun State, Nigeria.

Ostroverkhova, N.V., Kucher, A.N., Konusova, O.L., Kireeva, T.N. & Sharakhov, I.V. (2017) Genetic diversity of honeybees in different geographical regions of Siberia, International Journal of Environmental Studies, 74 (5):771-781.

Ozdil, F., Yýldýz, M.A., Meydan, H. & Gençer, H.V. (2006). Genetic structure of Turkish honeybee populations based on RAPD and mtDNA RFLP markers. Proceedings of The Second European Conference of Apidology (edited by Vladimir Vesely and DaliborTitera) p.53.10-14 September. Prague, Czech Republic.

Peakall, R. & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology, 6: 288-295.

Rahimi, A., Miromayedi, A., Kahrizi, D., Abdolshahi, R., Kazemi, E. & Yari, K.H. (2014). Microsatellite genetic diversity of Apis mellifera medaskorikov. Molecular Biology Reports, 41, 7755-7761.

Rahimi, A., Mirmoayedi, A., Kahrizi, D., Zarei, L. & Jamali, S. (2016). Genetic diversity of Iranian honeybee (Apis mellifera meda Skorikow, 1829) populations based on ISSR markers. Cellular and Molecular Biology, 62 (4): 53-58.

Rattanawannee, A., Duangphakdee, O., Chanchao, C., Teerapakpinyo, C., Warrit, N., Wongsiri, S., & Oldroyd, B. P. (2019). Genetic Characterization of Exotic Commercial Honey Bee (Hymenoptera: Apidae) Populations in Thailand Reveals High Genetic Diversity and Low Population Substructure. Journal of Economic Entomology, 113 (1): 34-42.

Rinderer, T. E., Oldroyd, B. P., Wongsiri, S., Sylvester, H. A., De Guzman, L. I., Stelzer, J. A., & Riggio, R. M. (1995). A morphological comparison of the dwarf honeybees of southeastern Thailand and Palawan, Philippines. Apidologie, 26 (5): 387-394.

Rohlf, F.J. (2000). NTSYS-pc numerical taxonomy and multivariate analysis system, version 2.20e. Exeter Publication, New York.

Sheppard, W.S. & Meixner, M.D. (2003) Apis mellifera pomonella, a new honeybee subspecies from Central Asia. Apidologie, 34: 367-375.

Solignac, M., Vautrin, D., Loiseau, A., Mougel, F. & Baudry, E., (2003). Five hundred and fifty microsatellite markers for the study of the honey bee (Apis mellifera L.) genome. Molecular Ecology Notes, 3: 307-311.

Strange, J. P., Garnery, L., &Sheppard, W. S. (2008). Morphological and molecular characterization of the Landes honeybee (Apis mellifera L.) ecotype for genetic conservation. Journal of Insect Conservation, 12 (5): 527-537.

Tunca, R.I. & Kence, M. (2011).Genetic diversity of honeybee (Apis mellifera L.: Hymenoptera: Apidae) populations in Turkey revealed by RAPD markers. African Journal of Agricultural Research, 6 (29): 6217-6225.

Whitfield, C. W., Behura, S. K., Berlocher, S. H., Clark, E. G., Johnston, J. S., Sheppard, W. S., Smith, D. R., Suarez, A. V., Weaver, D.

Downloads

Published

2020-11-10

Issue

Section

Articles