Modelling Evapotranspiration From Satellite Solar Radiation in Nigeria

Authors

  • O. Onafeso
  • D. Olumide

DOI:

https://doi.org/10.46881/ajsn.v1i1.21

Keywords:

Evapotranspiration, Nigeria, Satellite, Solar radiation

Abstract

The Makkink, Turc and Hargreaves empirical models were applied using GOES-derived estimates of solar radiation and atmospheric temperature to predict daily evapotranspiration and were tested for reliability, using the á-scale and Tukey post hoc multiple comparisons. While the Makkink model provided the best estimates of evapotranspiration (á=0.811), the empirical Hargreaves method demonstrated nearly comparable agreement (á=0.625) using only the satellite solar radiation and temperature data. The results show that it is possible to generate spatially distributed daily potential evapotranspiration estimates using less data intensive models as reliable alternatives to the Penman-Montheit model in Nigeria for agricultural planning purposes. These models can be applied with climate models to determine climate change impact for agricultural and food security.

Author Biographies

O. Onafeso

Department of Geography and Regional Planning, Olabisi Onabanjo University, Ago-Iwoye, Nigeria.

D. Olumide

Department of Geography and Regional Planning, Olabisi Onabanjo University, Ago-Iwoye, Nigeria.

References

Ayoade, J. O. (1980) On Global and Net Radiation Estimates for Nigeria. Nigerian Geographical Journal 23 (1&2), 163-175.

Bastiaanssen, W. G. M. (2000) SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin. Turkey. J. Hydrol. 229, 87-100.

de Bruin, H. A. R. (1987) From Penman to Makkink. In: Evaporation and Weather, Proceedings and Information (ed. by J. C. Hoogart) 5-33. Publ. 39, TNO Committee on Hydrological Research, The Hague, The Netherlands.

Diak, G.R., Anderson, M. C., Bland, W. L., Norman, J. M., Mecikalski, J. M. & Aune R. M. (1998) Agricultural management decision aids driven by real-time satellite data. Bull. Am. Met. Soc. 79, 1345-1355.

Diak, G. R., Bland, W. L. & Mecikalski, J. (1996) A note on first estimates of surface insolation from GOES-8 visible satellite data. Agric. For. Met. 82, 219-226.

Forest Management Evaluation and Coordinating Unit

(FORMECU) 1996 Nigerian Forestry Action Program. Federal Ministry of Agriculture and Natural Resources. Abuja.

Garatuza-Payan, J., Pinker, R. T., Shuttleworth, W. J. & Watts, C. J. (2001) Solar radiation and evapotrans-piration in northern Mexico estimated from remotely sensed measurements of cloudiness. Hydrol. Sci. J.

(3), 465-478.

Gautier, C., Diak, G. & Masse, S. (1980) A Simple Physical Model to Estimate Incident Solar Radiation at the Earth Surface from GOES Satellite Data. Journal of Applied Meteorology 19, 1005-1013.

Hargreaves, G. H. & Samani, Z. A. (1985) Reference crop evapotranspiration from temperature. Appl. Engng in Agric. 1(2), 96-99.

Jacobs, J. M., Anderson, M. C., Friess, L. C. & Diak, G. R. (2004) Solar radiation, longwave radiation and emergent wetland evapotranspiration estimates from satellite data in Florida, USA. Hydrol. Sci. J. 49(3), 461-476.

Jacobs, J. M., Myers, D. A., Anderson, M. C. & Diak, G. R. (2002) GOES surface insolation to estimate wetlands evapotranspiration. J. Hydrol. 266(1-2), 53-65.

Kirnak H., Short T. H. (2001) An Evapotranspiration Model for Nursery Plants Grown in a Lysimeter Under Field Conditions. Turk J. Agric. For. 25, 57-63.

Kumar, K. K. (1987) Comparison of Penman and Thornthwaite methods of estimating potential evapotranspiration for Indian conditions. Theor. Appl. Climatology 38, 140-146.

Makkink, G. F. (1957) Testing the Penman formula by means of lysimeters. Int. J. Water Engng 11, 277-288.

Mendicino G. and Senatore A. (2012) The Role of Evapotranspiration in the Framework of Water Resource Management and Planning Under Shortage Conditions, Evapotranspiration - Remote Sensing and Modelling, In Dr. Ayse Irmak (Ed.) Evapotranspiration - Remote Sensing and Modelling ISBN: 978-953 307-808-3, InTech. Pp. 197-226

Nemani, R.R. & Running, S. W. (1989) Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J. Appl. Met. 28, 279-284.

Odjugo P. A. O. (2005) An analysis of rainfall pattern in Nigeria. Global Journal of Environmental Science.

(2), 139-145.

Onafeso O. D. and Olusola O.A. (2015) Evapotranspiration Modelling and Ecogeomorphological Classification of Landscapes in Nigeria. In Gbadegesin A. S., Eze B. E., Orimoogunje O. O. I., Fashae O. A. Frontiers in Environmental Research and Sustainable Environment in the 21st Century. Department of Geography, University of Ibadan, Ibadan, Nigeria. Ibadan University Press. Pp. 265-278

Penman, H. L. (1948) Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London A 193, 120-146.

Pinker, R. T., Frouin, R. & Li, Z. (1995) A review of satellite methods to derive surface shortwave irradiance.

Remote Sens. Environ. 51, 105-124.

Price, J. C. (1990) Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans. Geosci. Remote Sens. 28, 940-948.

Raschke, E., Gratzki, A., & Rieland, M. (1987) Estimates of Global Radiation at the Ground from the Reduced Data Sets of the International Satellite Cloud Climatology Project. Journal of Climatology 7, 205-213.

Schmetz, J. (1989) Towards a surface radiation climatology. Retrieval of downward irradiance from satellites. Atmos. Res. 23, 287-321.

Seguin, B., Assad, E., Freaud, J. P., Imbernon, J. P., Kerr, Y. & Lagouarde, J. P. (1989) Use of meteorological satellite for rainfall and evaporation monitoring. Int. J. Remote Sens. 10, 1001-1017.

Senatore, A., Mendicino, G., Smiatek, G. & Kunstmann, H. (2011) Regional climate change projections and hydrological impact analysis for a Mediterranean basin in southern Italy. Journal of Hydrology, 399(1-2), 70-92.

Trajkovic S. (2005) Temperature-Based Approaches for Estimating Reference Evapotranspiration. J. Irrig. and Drain. Engrg., 131(4), 316-323.

Turc, L. (1961) Evaluation des besoins en eau d’irrigation, évapotranspiration potentielle, formulation simplifié et mise à jour. Ann. Agron. 12, 13-49.

Xu, C., Widén, E. & Halldin, S. (2005). Modelling Hydrological Consequences of Climate Change-Progress and Challenges. Advances in Atmospheric Sciences, 22 (6), 789-797.

Yao, Y., Liang, S., Qin, Q. & Wang, K., (2010). Monitoring Drought over the Conterminous United States Using MODIS and NCEP Reanalysis-2 Data. Journal of Applied Meteorology and Climatology, 49, 1665-1680.

Downloads

Published

2015-06-19

Issue

Section

Articles